### SYNTHESIS OF THROMBOXANE B2

## R. C. Kelly, I. Schletter and S. J. Stein The Upjohn Company Kalamazoo, Michigan

## (Received in USA 3 June 1976; received in UK for publication 26 July 1976)

Recently, Hamberg and Samuelsson described a significant new branch in the arachidonic acid metabolism scheme.<sup>1</sup> The endoperoxide which had previously been found to give the prostaglandins (e.g.  $PGE_2$  and  $PGF_2\alpha$ ) was found to produce new materials which they called thromboxane  $A_2$  (TXA<sub>2</sub>) and thromboxane  $B_2$  (TXB<sub>2</sub>). On the basis of mass spectral and degradation studies they assign to TXB<sub>2</sub> the structure of the hemiacetal of 8-(1-hydroxy-3-oxopropy1)-9, 12L-dihydroxy-5, 10-heptadienoic acid (PHD); that is, the entire structure as represented in Scheme I with the exception of the stereochemistry of the C-12 attached oxygen (prostaglandin numbering). We considered it likely that for the rearrangement of endoperoxide to TXA<sub>2</sub> (and thus to TXB<sub>2</sub>) the stereochemical integrity of C-12 would be maintained. This report in conjunction with the accompanying communication<sup>2</sup> describes a total synthesis of TXB<sub>2</sub> in which the conjectured stereochemistry at C-12 is produced stereospecifically.

In the first step of the synthesis, the benzyl alcohol  $\underline{1}^3$  was oxidized with Jones reagent to the keto lactone  $\underline{2}$ . This very base labile compound was treated without purification with m-chloroperbenzoic acid to give the crystalline dilactone  $\underline{3}$ , mp 108-111° [nmr(CDCl<sub>3</sub>) & 2.2-3.4(m,5), 3.68 (d,2,J=4Hz), 4.2-5.15(m,4), 7.28(s,5)]<sup>4</sup>. Treatment of  $\underline{3}$  with a tertiary amine (e.g. 1,5-diazabicyclo[5.4.0]undec-5-ene) gave the elimination product  $\underline{4}$ , m.p.65-70° [nmr(CDCl<sub>3</sub>) & 2.4-2.7(m,2), 2.7-3.5(m,1), 3.68(d,2,J=4.5Hz), 4.3-4.7(m,3), 5.97(dd,1,J=2,10Hz), 6.80(dd,1,J=3.5,10Hz), 7.28(s,5). Reduction of lactone  $\underline{4}$  with DIBAL in toluene at  $-78^\circ$  gave the lactol  $\underline{5}$  which was directly treated with diazomethane and dry HCl gas in methanol and trimethyl orthoformate. The resultant three products,  $\underline{6}$  [nmr(CDCl<sub>3</sub>) & 2.3-2.82(m,3), 3.26(s,6), 3.62(d,2,J=3Hz), 4.5(s,2), 4.4-4.8(m,2), 5.3-6.2(m,2), 7.31(s,5), ir (film) 1780 cm<sup>-1</sup> (C=0)];  $\underline{7}$  [nmr(CDCl<sub>3</sub>) & 1.8-3.2(m,3), 3.42(s,3), 3.65(s,5), 3.6-4.0(m,1), 4.60(d,2,J=2Hz), 4.90(t,1,J=2Hz), 5.6-6.1(m,2), 7.34(s,5); ir (film) 1740 cm<sup>-1</sup>(C=0)];<sup>5</sup> and  $\underline{8}$  [nmr(CDCl<sub>3</sub>) & 2.0-3.0(m,3), 3.43(s,3), 3.65(s,3), 3.5-4.1(m,3), 4.56(s,2), 4.90(t,1,J=1Hz), 5.6-6.15(m,2), 7.33(s,5); ir (film) 1740 cm<sup>-1</sup>(C=0)] were isolated in 15%, 35\% and 3.8\% yield, respectively, after chromatographic purification. The ester alkene  $7^5$  was converted to the crystalline

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$ 





endoperoxide



+

Thromboxane A2, TXA2

Thromboxane B2, TXB<sub>2</sub> or PHD

# SCHEME II











11

iodolactone 9, m.p. 126-127°, by sequential treatment with N NaOH, CO<sub>2</sub>, and KI and I<sub>2</sub> [nmr(CDCl<sub>3</sub>)  $\delta$  2.2-3.2(m,3), 3.38(s,3), 3.4-4.0(m,3), 4.1-4.4(m,1), 4.5-5.3(m,4), 7.32(s,5); ir (mull) 1780 cm<sup>-1</sup> (C=0)]. The iodolactone was deiodinated by the method of Corey and Suggs<sup>6</sup> to the crystalline lactone 10, m.p. 80-81° [nmr(CDCl<sub>3</sub>)  $\delta$  2.1-2.9(m,5), 3.32(s,3), 3.5-4.0(m,3), 4.57(s,2), 4.5-5.0(m,2), 7.32(s,5)]. Hydrogenation of 10 over 5% Pd/C in ethanol gave the debenzylated lactone 11 as an oil [nmr(CDCl<sub>3</sub>)  $\delta$  2.0-3.1(m,6), 3.34(s,3), 3.4-3.9(m,3), 4.5-5.0(m,2)]. This alcohol, a single epimer at each chiral center, is identical to the  $\alpha$ -methoxy isomer of compound 10 in the accompanying communication<sup>2,7</sup> and was transformed into TXB<sub>2</sub> as described therein.

#### ACKNOWLEDGME NT

We wish to express our thanks to Dr. H. A. Karnes for supplies of the benzyl ether alcohol  $\underline{1}$ .

### REFERENCES

- 1. M. Hamberg and B. Samuelsson, Proc. Nat. Acad. Sci. USA, 72, 2994 (1975).
- N. A. Nelson and R. W. Jackson, <u>Tetrahedron Lett.</u>, XXXX (1976). See also, W.P. Schneider and R. A. Morge, <u>Tetrahedron Lett.</u>, XXXX (1976).
- E. J. Corey, H. Shirahama, H. Yamamoto, S. Terashima, A. Venkateswarlu, and T. K. Schaaf, J. Amer. Chem. Soc., 93, 1490 (1971).
- 4. The stereochemistry at C-9 (thromboxane numbering) was assigned as shown on the basis of the known retention of configuration in the Bayer-Villiger reaction.
- 5. The assignment of <u>7</u> as the  $\alpha$ -methoxy anomer could not be made until it was converted to lactones 9 and 10, where the nmr couplings for the anomeric proton were definitive.
- 6. E. J. Corey and J. W. Suggs, J. Org. Chem., 40, 2554 (1975).
- 7. The compounds gave identical NMR and IR spectral data and showed identical TLC mobilities on silica gel.